A non-perturbative Lorentzian path integral for gravity
نویسنده
چکیده
A well-defined regularized path integral for Lorentzian quantum gravity in three and four dimensions is constructed, given in terms of a sum over dynamically triangulated causal space-times. Each Lorentzian geometry and its associated action have a unique Wick rotation to the Euclidean sector. All space-time histories possess a distinguished notion of a discrete proper time. For finite lattice volume, the associated transfer matrix is self-adjoint and bounded. The reflection positivity of the model ensures the existence of a well-defined Hamiltonian. The degenerate geometric phases found previously in dynamically triangulated Euclidean gravity are not present. The phase structure of the new Lorentzian quantum gravity model can be readily investigated by both analytic and numerical methods.
منابع مشابه
Non-perturbative 3d Lorentzian Quantum Gravity
We have recently introduced a discrete model of Lorentzian quantum gravity, given as a regularized non-perturbative state sum over simplicial Lorentzian spacetimes, each possessing a unique Wick rotation to Euclidean signature. We investigate here the phase structure of the Wick-rotated path integral in three dimensions with the aid of computer simulations. After fine-tuning the cosmological co...
متن کاملThe Real Wick rotations in quantum gravity
We discuss Wick rotations in the context of gravity, with emphasis on a non-perturbative Wick rotation proposed in hep-th/0103186 mapping real Lorentzian metrics to real Euclidean metrics in proper-time coordinates. As an application, we demonstrate how this Wick rotation leads to a correct answer for a two dimensional non-perturbative path-integral.
متن کاملDiscrete Lorentzian Quantum Gravity
Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated in a background-independent way. After summarizing the status quo of discrete covariant lattice mod...
متن کاملNon-perturbative Lorentzian Quantum Gravity, Causality and Topology Change
We formulate a non-perturbative lattice model of two-dimensional Lorentzian quantum gravity by performing the path integral over geometries with a causal structure. The model can be solved exactly at the discretized level. Its continuum limit coincides with the theory obtained by quantizing 2d continuum gravity in proper-time gauge, but it disagrees with 2d gravity defined via matrix models or ...
متن کاملMaking the gravitational path integral more Lorentzian or Life beyond Liouville gravity
In two space-time dimensions, there is a theory of Lorentzian quantum gravity which can be defined by a rigorous, non-perturbative path integral and is inequivalent to the well-known theory of (Euclidean) quantum Liouville gravity. It has a number of appealing features: i) its quantum geometry is non-fractal, ii) it remains consistent when coupled to matter, even beyond the c=1 barrier, iii) it...
متن کامل